1 (a (i) 18 m/s В1 (ii) (0.90 s is) driver's time to react **B1 (b)** (i) $(a = (v - u)/t \ OR \ \Delta v/t \ OR \ either in words \ OR \ (18 - 0)/3.1 \ OR \ 18/3.1$ $5.8 \,\mathrm{m/s^2}$ Α1 OR Values from any correct points on graph (C1) Answer dependent on accuracy of chosen points (A1) (ii) Evidence of use of: (distance =) area under graph e.g. 1/2bh $(18 \times 0.9) + (0.5 \times 3.1 \times 18)$ C1 44 m **A1** (c) (Without seat belt, driver:) e.g. keeps moving (forwards)/does not stop/has inertia/has momentum В1 (Driver) hits steering wheel/windscreen/dashboard [Total: 9] (a dots farther apart (in 2nd time interval) owtte **B1** 2 (b) (i) (average speed =) $d \div t$, in any form, e.g. words, symbols, numbers C1 $0.095 \, \text{m/s}$ **A1** В (ii) (average speed =) 0.29 m/s C1 (c) $(a =) (v - u) \div t$ C1 = (candidate's (b)(ii) - candidate's (b)(i)) ÷ 0.02 correct value calculated from candidate's values in (b)(i)(ii), expect 9.5 m/s² Α1

3	(a	metre rule, tape measure, (surveyor's) laser measurer, trundle wheel tape is too vague, accept rule(r)	В1
	(b)	$M = \rho V$ in any form or ρV in words, symbols or numbers	C1
		(mass = 1.2×76.4 =) 92 kg	A1
	(c)	mass (of air) in room decreases	B1
		(because) air expands/vol of air increases/density of air decreases/appropriate use of $pV = nRT$ OR pressure argument e.g. pressure would have increased (with constant volume) if mass constant	B1
		any ONE from: some air leaves room molecules collide harder or more (often) molecules move faster/have more energy molecules move further apart NOT molecules expand	B1
			[Total: 6]
4	(a	Period: 1.81 s OR 1.8 s as mean value OR 1.8 s as most common reading / the mode	B1
	(b)	Time a minimum of 2 (successive) oscillations Divide result by the number of oscillations OR	B1 B1
		Count no. of oscillations in at least 20 s	(B1)
		Divide the time by the number of oscillations OR Divide no. of oscillations by time and find reciprocal 2 of:	(B1)
		Repeat (several times) <u>and</u> find mean Time with reference to fixed / fiducial point or top or bottom of oscillation Check / set zero of stop-watch Show knowledge of what is meant by one oscillation	В2
			[Total: 5]

- 5 **(a)** scalar, vector, scalar B3
 - (b) (average speed) = distance / time OR 18/1.2 C1 = 15 m/s
 - (ii) (time =) (total) distance / speed OR 21/15 C1 = 1.4 s
 - (iii) air resistance / friction / force opposing motion B1
 - (iv) velocity changes because direction changes B1 [9]